Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Facial Plast Surg Aesthet Med ; 2020 Jul 02.
Article in English | MEDLINE | ID: covidwho-759892

ABSTRACT

Background: COVID-19 poses a potentially significant infectious risk during procedures of the head and neck due to high viral loads in the nasal cavity and nasopharynx. Facial plastic surgery has significant exposure to these areas during craniomaxillofacial trauma procedures and rhinoplasty. Methods: Airborne particulate generation in the 1-10 µm range was quantified with an optical particle sizer in real time during cadaveric-simulated rhinoplasty and facial trauma conditions. Procedures tested included mandibular plate screw drilling, calvarial drilling, nasal bone osteotomy, nasal dorsal rasping, and piezoelectric saw use. Particulate generation was measured both adjacent to the surgical site and at surgeon mouth level (SML). Results: Mandibular plate screw drilling without irrigation generated significant particulate both adjacent to the surgical site and at SML (p < 0.01). Irrigation mitigated particulate generation at SML to nonsignificant levels. Calvarial drilling additionally produced substantial particulate above baseline adjacent to the surgical site (p < 0.01). Standard nasal osteotomies and dorsal rasping did not generate detectable airborne particulate, whereas piezoelectric saw use was associated with significant particulate generation both adjacent to the surgical site (p < 0.001) and at SML (p < 0.01). At SML, smaller particulate represented a significantly higher proportion of total particulate detected. Conclusions: The majority of craniomaxillofacial trauma procedures involve particle generation that may be limited in spread by the use of local irrigation. Most bony work involved in rhinoplasty can be safely performed without a high degree of particle formation. The use of piezoelectric instruments in rhinoplasty should be avoided when concerned for particulate generation.

2.
Int Forum Allergy Rhinol ; 10(10): 1136-1140, 2020 10.
Article in English | MEDLINE | ID: covidwho-603709

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has significantly impacted endonasal surgery, and recent experimentation has demonstrated that sinonasal drilling and cautery have significant propensity for airborne particulate generation immediately adjacent to the surgical field. In the present investigation, we assessed nasopharyngeal suctioning as a mitigation strategy to decrease particulate spread during simulated endonasal surgical activity. METHODS: Airborne particulate generation in the 1-µm to 10-µm range was quantified with an optical particle sizer in real-time during cadaveric-simulated anterior and posterior endonasal drilling and cautery conditions. To test suction mitigation, experiments were performed both with and without a rigid suction placed in the contralateral nostril, terminating in the nasopharynx. RESULTS: Both anterior (medial maxillary wall and nasal septum) and posterior (sphenoid rostrum) drilling produced significant particulate generation in the 1-µm to 10-µm range throughout the duration of drilling (p < 0.001) without the use of suction, whereas nasopharyngeal suction use eliminated the detection of generated airborne particulate. A similar effect was seen with nasal cautery, with significant particle generation (p < 0.001) that was reduced to undetectable levels with the use of nasopharyngeal suction. CONCLUSION: The use of nasopharyngeal suctioning via the contralateral nostril minimizes airborne particulate spread during simulated sinonasal drilling and cautery. In the era of COVID-19, this technique offers an immediately available measure that may increase surgical safety.


Subject(s)
COVID-19/surgery , Cautery , Endoscopy , Nasopharynx/surgery , Paranasal Sinuses/surgery , SARS-CoV-2/physiology , Suction/methods , Cadaver , Humans , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL